• 示波器實驗報告

    更新時間:2023-04-27    來源:實驗報告    手機版     字體:

    示波器實驗報告范文匯總七篇

    示波器實驗報告11篇。 報告是用口頭或書面的形式所做的陳述,每當我們的任務結束后。我們常常會用到報告這種實用文,到底如何才能寫好報告。有關“示波器實驗報告”的信息已經為您準備好了一定要看看,歡迎大家閱讀,希望對大家有所幫助! 以下是小編為大家收集的示波器實驗報告范文匯總七篇,僅供參考,歡迎大家閱讀。

    示波器實驗報告篇1

    示波器的使用

    預習思考題

    1.示波器的功能是什么? 2.掃描同步如何理解? 3.什么是李薩如圖?

    1.電子示波器是用來直接顯示,觀察和測量電壓波形機器參數的電子儀器。

    2.用每一個觸發脈沖產生于同觸發電壓所對應的觸發信號的同相位點,故每次掃描起點會準確地落在同相位點于是每次掃描的起始點會準確地落在同相位點,于是每次掃描出的波形完全重復而穩定地顯示被測波的波形。就是觸發掃描實現同步的原理。

    3.當示波器在Y軸與X軸同時輸入正弦信號電壓且他們的頻率式簡單的整數比時熒光屏上出現各式各樣的圖形這類圖形稱作“李薩如圖”

    實驗數據記錄

    實驗儀器:

    YB4320F雙追蹤示波器,SG1642函數信號發生器 實驗步驟:

    1.用示波器觀察信號波形

    (1)調節掃描旋鈕,使示波器的掃描線至長短適當的穩定水平亮線

    (2)將信號發生器接到ch1或ch2 輸入上,頻率選用數百或數千赫茲方式開關及觸發源開關的位置與信號輸入通道一致的出穩定的波形。

    (3)改變輸入信號電壓的波形,如正弦波,三角波,方波調節掃描微調,以得到2個 (4)可以在調節其他該掃描熟悉示波器 2.用李薩如圖測定頻率

    (1)當示波器在Y軸與X軸同時輸入正弦信號電壓,且他們的頻率式簡單的整數比的的熒光屏上出現各種形式的圖形,這類圖形稱作“李薩如圖”

    (2)當fg:fx=1:1時輸入fg=50hz.fx=50hz ,繪出一種李薩如圖 (3)當fg:fx=1:2時輸入fg=300hz.fx=200hz,繪出一種李薩如圖

    數據處理如上

    思考題

    1.示波器為接通前,有那些注意事項?

    2.波形不穩定時,應調節那個旋鈕?

    3.為了觀察李薩如圖,應該怎樣設置按鈕?

    4.欲關閉示波器,首先應把那個旋鈕扭到最小?

    1,1。確定是否接地2。是否正確連接探頭3。查看所有的終端額定值4。在是使用一個通道的情況下觸發源選的通用一致

    2.應調節水平微調使之穩定,再調節CH通道

    3.首先示波器應該在XY軸輸入正弦電壓,且加上fg與fx上的頻率成整數比

    4.將示波器探頭脫開測量電路,將輸入選擇開關,達到接地位置,關機,如果是模擬示波器的話,需要將聚集旋鈕和亮度旋鈕調低,然后在關閉電源。

    示波器實驗報告3

    【實驗目的】

    1.了解示波器顯示波形的原理,了解示波器各主要組成部分及它們之間的聯系和配合;

    2.熟悉使用示波器的基本方法,學會用示波器測量波形的電壓幅度和頻率; 3.觀察李薩如圖形。

    【實驗儀器】

    1、雙蹤示波器 GOS-6021型1臺 2、函數信號發生器YB1602型 1臺 3、連接線 示波器專用 2根

    示波器和信號發生器的使用說明請熟讀常用儀器部分。

    [實驗原理]

    示波器由示波管、掃描同步系統、Y軸和X軸放大系統和電源四部分組成,

    1、示波管

    如圖所示,左端為一電子槍,電子槍加熱后發出一束電子,電子經電場加速以高速打在右端的熒光屏上,屏上的熒光物發光形成一亮點。亮點在偏轉板電壓的作用下,位置也隨之改變。在一定范圍內,亮點的位移與偏轉板上所加電壓成正比。

    示波管結構簡圖 示波管內的偏轉板

    2、掃描與同步的作用

    如果在X軸偏轉板加上波形為鋸齒形的電壓,在熒光屏上看到的是一條水平線,如圖

    圖掃描的作用及其顯示

    如果在Y軸偏轉板上加正弦電壓,而X軸偏轉板不加任何電壓,則電子束的亮點在縱方向隨時間作正弦式振蕩,在橫方向不動。我們看到的將是一條垂直的亮線,如圖

    如果在Y軸偏轉板上加正弦電壓,又在X軸偏轉板上加鋸齒形電壓,則熒光屏上的亮點將同時進行方向互相垂直的兩種位移,其合成原理如圖所示,描出了正弦圖形。如果正弦波與鋸齒波的周期(頻率)相同,這個正弦圖形將穩定地停在熒光屏上。但如果正弦波與鋸齒波的周期稍有不同,則第二次所描出的曲線將和第一次的曲線位置稍微錯開,在熒光屏上將看到不穩定的圖形或不斷地移動的圖形,甚至很復雜的圖形。由此可見:

    (1)要想看到Y軸偏轉板電壓的圖形,必須加上X軸偏轉板電壓把它展開,這個過程稱為掃描。如果要顯示的波形不畸變,掃描必須是線性的,即必須加鋸齒波。

    (2)要使顯示的波形穩定,Y軸偏轉板電壓頻率與X軸偏轉板電壓頻率的比值必須是整數,即:

    fy

    nn=1,2,3, fx

    示波器中的鋸齒掃描電壓的頻率雖然可調,但要準確的滿足上式,光靠人工調節還是不夠的,待測電壓的頻率越高,越難滿足上述條件。為此,在示波器內部加裝了自動頻率跟蹤的裝置,稱為“同步”。在人工調節到接近滿足式頻率整數倍時的條件下,再加入“同步”的作用,掃描電壓的周期就能準確地等于待測電壓周期的整數倍,從而獲得穩定的波形。

    (1)如果Y軸加正弦電壓,X軸也加正弦掃描電壓,得出的圖形將是李薩

    如圖形,如表所示。李薩如圖形可以用來測量未知頻率。令fy、fx分別代表Y軸和X軸電壓的頻率,nx代表X方向的切線和圖形相切的切點數,ny代表Y方向的切線和圖形相切的切點數,則有

    nxfxny

    李薩如圖形舉例表

    fy

    如果已知fx,則由李薩如圖形可求出fy。 【實驗內容】

    1.示波器的調整

    (1)不接外信號,進入非X-Y方式 (2)調整掃描信號的位置和清晰度 (3)設置示波器工作方式 2.正弦波形的顯示

    (1)熟讀示波器的使用說明,掌握示波器的性能及使用方法。

    (2)把信號發生器輸出接到示波器的Y軸輸入上,接通電源開關,把示波器和信號發生器的各旋鈕調到正常使用位置,使在熒光屏上顯示便于觀測的穩定波形。

    3.示波器的定標和波形電壓、周期的測量

    (1)把Y軸偏轉因數和掃描時間偏轉因數旋鈕都放在“校準”位置(指示燈“VAR”熄滅)。

    (2)把校準信號輸出端接到Y軸輸入插座

    (3)把信號發生器的正弦電壓接到Y軸輸入端,用示波器測量正弦電壓的幅值和周期,并和信號發生器上顯示的頻率值比較。

    (4)選擇不同幅值和頻率的5種正弦波,重復步驟(3),記下測量結果。 4.李莎如圖形的觀測 (1) 把信號發生器后面50Hz輸出信號接到X通道,而Y通道接入可調的

    正弦信號

    (2) 分別調節兩個通道讓他們能夠正常顯示波形 (3) 切換到X-Y模式,調整兩個通道的偏轉因子,使圖形正常顯示 (4) 調節Y信號的頻率,觀測不同頻率比例下的李薩如圖

    數據記錄 1、頻率測量

    示波器頻率計數器的測頻精度 0.01% 示波器測頻儀器誤差3%

    示波器測量電壓儀器誤差3%

    (1) 示波器測量頻率

    f=57.4KHz ffEf57.43%1.722KHz

    f57.41.8KHz或f572KHz

    (2) 函數信號發生器測頻

    f=55.45 KH ffE0.0155.451%f

    f55.450.56KHz或f55.40.6KHz

    或0.01KH0.z0.6KHz

    (3) 示波器測量電壓

    V1=5.68V V1V1EV5.683%0.16V或0.2V

    V15.680.16V或V15.70.2V (4) 函數信號發生器測量電壓

    V2=5.3VV2V2EV1字5.315%0.10.81V或0.9V

    V25.300.81V或V25.30.9V

    注意:一般可寫為后面的形式更加科學,因為原始數據的有效數字只有2位,不可能經處理后提高精度變成3個有效數字。

    示波器實驗報告4

    【實驗目的】

    1、了解示波器的基本結構和工作原理,學會正確使用示波器。 2、掌握用示波器觀察各種電信號波形、測量電壓和頻率的方法。

    3、掌握觀察利薩如圖形的方法,并能用利薩如圖形測量未知正弦信號的頻率。

    【實驗儀器】

    固緯GOS-620型雙蹤示波器一臺,GFG-809型信號發生器兩臺,連線若干。

    【實驗原理】

    示波器是利用示波管內電子束在電場或磁場中的偏轉,顯示電壓信號隨時間變化波形的一種電子觀測儀器。在各行各業與各個研究領域都有著廣泛的應用。其基本結構與工作原理如下

    1、示波器的基本結構與顯示波形的基本原理

    本次實驗使用的是臺灣固緯公司生產的通用雙蹤示波器。基本結構大致可分為示波管(CRT)、掃描同步系統、放大與衰減系統、電源系統四個部分。 “示波管(CRT)”是示波器的核心部件如圖1所示的。可細分為電子槍,偏轉系統和熒光屏三部分。

    1)電子槍

    電子槍包括燈絲F,陰極K,控制柵極G,第一陽極A1,第二陽極A2等。陰極被燈絲加熱后,可沿軸向發射電子。并在熒光屏上顯現一個清晰的小圓點。

    2)偏轉系統

    偏轉系統由兩對互相垂直的金屬偏轉板x和y組成,分別控制電子束在水平方向和豎直方向的偏轉。

    從電子槍射出的電子束若不受橫向電場的作用,將沿軸線前進并在熒光屏的中心呈現靜止的光點。若受到橫向電場的作用,電子束的運動方向就會偏離軸線,

    F燈絲,K陰極,G控制柵極,A1、A2第一、第二陽極,Y、X豎直、水平偏轉板

    圖1示波管結構簡圖

    屏上光點的位置就會移動。x偏轉板之間的橫向電場用來控制光點在水平方向的位移,y偏轉板用來控制光點在豎直方向的位移。如果兩對偏轉板都加上電場,則光點在二者的共同控制下,將在熒光屏平面二維方向上發生位移。

    3)熒光屏

    熒光屏的作用是將電子束轟擊點的軌跡顯示出來以供觀測。

    4)顯示波形的原理

    在豎直偏轉板上加一交變正弦電壓,可看到一條豎直的亮線,如圖3所示。在水平偏轉板上加“鋸齒波電壓”掃描電壓,使熒光屏上的亮點沿水平方向拉開。電子的運動是兩相互相垂直運動的合成。當鋸齒波電壓與正弦電壓的變化周期相等時,在熒光屏上將顯示出一個穩定的正弦電壓波形圖如圖4所示。

    當波形信號的頻率等于鋸齒波頻率的整數倍時,熒光屏上將呈現整數個完整而穩定的被測信號的波形,當兩者不成整數倍時,對于被測信號來說,每次掃描的起點都不會相同,結果造成波形在水平方向上不斷的移動。為了消除這一現象,必須使被測信號的起點與掃描電壓的起點保持“同步”,這一功能由機內 “觸發同步”電路來完成。

    2、利用利薩如圖測正弦電壓的頻率基本原理

    通過觀察熒光屏上利薩如圖形進行頻率對比的方法稱之為利薩如圖形法。此法于1855年由利薩如所證明。將被測正弦信號fy加到y偏轉板,將參考正弦信號fx加到x偏轉板,當兩者的頻率之比

    fyfx

    是整數時,在熒光屏上將出現利薩如

    圖。

    圖5給出了幾種不同頻率比的利薩如圖形。判斷兩個電壓信號頻率比的條件是屏上出現了利薩如圖形穩定不動,方法是對穩定不動的圖形分別做水平直線和豎直直線與圖形相切,設水平線上的切點數最多為NX,豎直線上的切點數最多為NY,則

    fyfx

    nx

    ny

    圖5的第一個圖形,nx2,ny4,Y軸上的信號頻率fy與x軸上的信號頻率

    2

    fx之比為,若fx已知,則fy可求。

    4

    【實驗內容與步驟】

    開機前完成以下準備工作:掃描微調、電壓靈敏度微調置校準檔(順時針打死)、掃描方式(置自動)、觸發源選項(置CH1或CH2)、耦合方式(置AC);按壓電源按鈕預熱3分鐘。

    (2)初始化示波器面板獲得“點”:輝度、聚焦、三個位置旋鈕置于居中位置,掃描靈敏度置于正交模式。(五居中一歸零);

    (3)順時針旋轉掃描靈敏度選扭置0.2ms檔獲取掃描線; (4)利用CH1觀察機內方波校準信號并作為待測電信號1,記錄其相關參數于黑板給出的數據記錄表格第一行;

    (5)分別利用CH1與CH2兩個通道觀察左右兩個音頻信號發生器提供的10V1000Hz與15V20xHz的正弦交流信號,并作為待測電信號2與待測電信號3,記錄其相關參數于黑板給出的數據記錄表格第二行與第三行。

    (6)掃描靈敏度選鈕置正交模式,按壓下觸發交替旋鈕,顯示模式置雙蹤模式觀測不同頻率比的利薩如圖形。

    (7)申請課堂考核,歸整儀器結束實驗。

    【實驗數據與實驗結果】

    圖5利薩如圖

    附表 電信號電壓、頻率的測量數據記錄表(11海科曹麗安娜提供)

    實驗結果:詳見下頁附圖(11海科曹麗安娜提供)

    注意事項

    1.信號發生器、示波器預熱3分鐘以后才能正常工作。

    2.測信號電壓時,一定要將電壓衰減旋紐的微調順時針旋足(校正位置);測信號周期時,一定要將掃描速率旋紐的微調順時針旋足(校正位置);

    3.不要頻繁開關機,示波器上光點的亮度不可調得太強,也不能讓亮點長時間停在熒光屏的一點上,如果暫時不用,把輝度降到最低即可。

    4.轉動旋鈕和按鍵時必須有的放矢,不要將開關和旋鈕強行旋轉、死拉硬擰,以免損壞按鍵、旋鈕和示波器,示波器探頭與插座的配合方式類似于掛口燈泡與燈座的鎖扣配合方式,切忌生拉硬拽。

    示波器實驗報告篇2

    示波器是利用電子示波管的特性,將人眼無法直接觀測的交變電信號轉換成圖像,顯示在熒光屏上以便測量的電子測量儀器。它是觀察數字電路實驗現象、分析實驗中的問題、測量實驗結果必不可少的重要儀器。示波器由示波管和電源系統、同步系統、X軸偏轉系統、Y軸偏轉系統、延遲掃描系統、標準信號源組成。

    1.1 示波管

    陰極射線管(CRT)簡稱示波管,是示波器的核心。它將電信號轉換為光信號。正如圖1所示,電子槍、偏轉系統和熒光屏三部分密封在一個真空玻璃殼內,構成了一個完整的示波管。

    1.熒光屏

    現在的示波管屏面通常是矩形平面,內表面沉積一層磷光材料構成熒光膜。在熒光膜上常又增加一層蒸發鋁膜。高速電子穿過鋁膜,撞擊熒光粉而發光形成亮點。鋁膜具有內反射作用,有利于提高亮點的輝度。鋁膜還有散熱等其他作用。

    當電子停止轟擊后,亮點不能立即消失而要保留一段時間。亮點輝度下降到原始值的10%所經過的時間叫做“余輝時間”。余輝時間短于10μs為極短余輝,10μs—1ms為短余輝,1ms—0.1s為中余輝,0.1s-1s為長余輝,大于1s為極長余輝。一般的示波器配備中余輝示波管,高頻示波器選用短余輝,低頻示波器選用長余輝。

    由于所用磷光材料不同,熒光屏上能發出不同顏色的光。一般示波器多采用發綠光的示波管,以保護人的眼睛。

    2.電子槍及聚焦

    電子槍由燈絲(F)、陰極(K)、柵極(G1)、前加速極(G2)(或稱第二柵極)、第一陽極(A1)和第二陽極(A2)組成。它的作用是發射電子并形成很細的高速電子束。燈絲通電加熱陰極,陰極受熱發射電子。柵極是一個頂部有小孔的金屬園筒,套在陰極外面。由于柵極電位比陰極低,對陰極發射的電子起控制作用,一般只有運動初速度大的少量電子,在陽極電壓的作用下能穿過柵極小孔,奔向熒光屏。初速度小的電子仍返回陰極。如果柵極電位過低,則全部電子返回陰極,即管子截止。調節電路中的W1電位器,可以改變柵極電位,控制射向熒光屏的電子流密度,從而達到調節亮點的輝度。第一陽極、第二陽極和前加速極都是與陰極在同一條軸線上的三個金屬圓筒。前加速極G2與A2相連,所加電位比A1高。G2的正電位對陰極電子奔向熒光屏起加速作用。

    電子束從陰極奔向熒光屏的過程中,經過兩次聚焦過程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一電子透鏡。第二次聚焦發生在G2、A1、A2區域,調節第二陽極A2的電位,能使電子束正好會聚于熒光屏上的一點,這是第二次聚焦。A1上的電壓叫做聚焦電壓,A1又被叫做聚焦極。有時調節A1電壓仍不能滿足良好聚焦,需微調第二陽極A2的電壓,A2又叫做輔助聚焦極。

    3.偏轉系統

    偏轉系統控制電子射線方向,使熒光屏上的光點隨外加信號的變化描繪出被測信號的波形。圖8.1中,Y1、Y2和Xl、X2兩對互相垂直的偏轉板組成偏轉系統。Y軸偏轉板在前,X軸偏轉板在后,因此Y軸靈敏度高(被測信號經處理后加到Y軸)。兩對偏轉板分別加上電壓,使兩對偏轉板間各自形成電場,分別控制電子束在垂直方向和水平方向偏轉。

    4.示波管的電源

    為使示波管正常工作,對電源供給有一定要求。規定第二陽極與偏轉板之間電位相近,偏轉板的平均電位為零或接近為零。陰極必須工作在負電位上。柵極G1相對陰極為負電位(—30V~—100V),而且可調,以實現輝度調節。第一陽極為正電位(約+100V~+600V),也應可調,用作聚焦調節。第二陽極與前加速極相連,對陰極為正高壓(約+1000V),相對于地電位的可調范圍為±50V。由于示波管各電極電流很小,可以用公共高壓經電阻分壓器供電。

    1.2 示波器的基本組成

    從上一小節可以看出,只要控制X軸偏轉板和Y軸偏轉板上的電壓,就能控制示波管顯示的圖形形狀。我們知道,一個電子信號是時間的函數f(t),它隨時間的變化而變化。因此,只要在示波管的X軸偏轉板上加一個與時間變量成正比的電壓,在y軸加上被測信號(經過比例放大或者縮小),示波管屏幕上就會顯示出被測信號隨時間變化的圖形。電信號中,在一段時間內與時間變量成正比的信號是鋸齒波。

    示波器的基本組成框圖如圖2所示。它由示波管、Y軸系統、X軸系統、Z軸系統和電源等五部分組成。

    被測信號①接到“Y"輸入端,經Y軸衰減器適當衰減后送至Y1放大器(前置放大),推挽輸出信號②和③。經延遲級延遲Г1時間,到Y2放大器。放大后產生足夠大的信號④和⑤,加到示波管的Y軸偏轉板上。為了在屏幕上顯示出完整的穩定波形,將Y軸的被測信號③引入X軸系統的觸發電路,在引入信號的正(或者負)極性的某一電平值產生觸發脈沖⑥,啟動鋸齒波掃描電路(時基發生器),產生掃描電壓⑦。由于從觸發到啟動掃描有一時間延遲Г2,為保證Y軸信號到達熒光屏之前X軸開始掃描,Y軸的延遲時間Г1應稍大于X軸的延遲時間Г2。掃描電壓⑦經X軸放大器放大,產生推挽輸出⑨和⑩,加到示波管的X軸偏轉板上。z軸系統用于放大掃描電壓正程,并且變成正向矩形波,送到示波管柵極。這使得在掃描正程顯示的波形有某一固定輝度,而在掃描回程進行抹跡。

    以上是示波器的基本工作原理。雙蹤顯示則是利用電子開關將Y軸輸入的兩個不同的被測信號分別顯示在熒光屏上。由于人眼的視覺暫留作用,當轉換頻率高到一定程度后,看到的是兩個穩定的、清晰的信號波形。

    示波器中往往有一個精確穩定的方波信號發生器,供校驗示波器用。

    示波器實驗報告篇3

    一、 實驗目的

    1.熟悉面板控制件各開關旋鈕的功能和調節使用方法。

    2.學會用示波器觀測電信號的波形及電壓、頻率、周期等參數

    二、實驗儀器

    YB4328示波器、YB1602函數信號發生器

    三、 示波器的使用

    1.示波器

    ①雙蹤示波器一般有五種工作方式,即“Y1”、“Y2”、“Y1+Y2”三種

    單蹤顯示方式和“交替”“斷續”二種雙蹤顯示方式。“交替”顯示一般適宜于輸入信號頻率較高時使用。“斷續”顯示一般適宜于輸入信號頻率較低時使用。

    ②為了顯示穩定的被測信號波形,“觸發源選擇”開關一般選為“內”觸發,使掃描觸發信號取自示波器內部的Y通道。

    ③觸發方式開關通常先置于“自動”調出波形后,若被顯示的波形不穩定,可置觸發方式開關于“常態”,通過調節“觸發電平”旋鈕找到合適的觸發電壓,使被測試的波形穩定地顯示在示波器屏幕上。有時,由于選擇了較慢的掃描速率,顯示屏上將會出現閃爍的光跡,但被測信號的波形不在X軸方向左右移動,這樣的現象仍屬于穩定顯示。

    ④適當調節“掃描速率”及“Y軸靈敏度”旋鈕使屏幕上顯示1-2個周期的被測信號波形。在測量幅值時,應注意將“Y軸靈敏度微調”旋鈕置于“校準”位置,即順時針旋到底。在測量周期時,應注意將

    “X軸掃速微調”旋鈕置于“校準”位置,即順時針旋到底。還要注意“擴展”旋鈕的位置。

    根據被測波形在屏幕坐標刻度上垂直方向所占的格數(div或cm)與“Y軸靈敏度”旋鈕指示值(v/div)的乘積,即可得到交流電壓的峰峰值Up-p:

    Up-p=(V/div)×div

    根據被測信號波形一個周期在屏幕水平方向所占的格數(div或cm)與“掃速”旋鈕指示值(t/div)的乘積,即可算得信號頻率的實測值:

    T=(S/div)×div,f=1/T

    2. 函數信號發生器

    函數信號發生器按需要輸出正弦波、方波、三角波三種信號波形。 通過輸出衰減開關和輸出幅度調節旋鈕,可使輸出電壓在毫伏級到伏特級范圍內連續調節。函數信號發生器的輸出信號頻率可以通過頻率分檔開關進行調節。

    注意:函數信號發生器作為信號源,它的輸出端不允許短路。

    四、實驗內容及步驟

    1.用校正信號對示波器進行自檢

    (1) 掃描基線調節

    將示波器的工作方式開關置于“單蹤CH1”(觸發CH1或CH2),觸發方式開關置于“自動”。開啟電源開關預熱后,調節“輝度”、“聚焦”、“輔助聚焦”等旋鈕,

    線。再調節“X位移”和“Y位移”使基線位于屏幕的中間位置。(若基線與水平刻度線有夾角,可以用螺絲刀調節“光跡旋轉”電位器,使基線與水平刻度線重合。)

    (2)測試“校正信號”波形的幅度、頻率

    將示波器的“校正信號”通過探頭引入選定的Y通道(CH1或CH2),將Y軸輸入耦合方式開關置于“AC(交流)”或“DC(直流)”,觸發源選擇開關置“內”,內觸發源選擇開關置“CH1”或“CH2”。調節X軸“掃描速率”旋鈕(t/div)和Y軸“輸入靈敏度”旋鈕(V/div),使示波器顯示屏上顯示出一個或數個周期穩定的方波波形。

    2.用示波器測量信號電壓和周期

    調節信號發生器有關旋鈕,使輸出頻率分別為1KHz、10KHz,有效值均為1V的正弦波信號。改變示波器“t/div”及“V/div”等旋鈕,測量信號源輸出電壓峰峰值及信號周期。

    五、小結與注意事項

    1.信號發生器、示波器預熱幾分鐘以后才能正常工作。

    2.測試過程中合理選擇量程,并牢記將“微調”開關置于“校準”位置。

    3.不要頻繁開關機,示波器上光點的亮度不可調得太強,也不能讓亮點長時間停在熒光屏的一點上,如果暫時不用,把輝度降到最低即可。

    示波器實驗報告篇4

    示波器實驗報告1

    【實驗題目】 示波器的原理和使用

    【實驗目的】

    1.了解示波器的基本機構和工作原理,掌握使用示波器和信號發生器的基本方法。

    2.學會使用示波器觀測電信號波形和電壓副值以及頻率。

    3.學會使用示波器觀察李薩如圖并測頻率。

    【實驗原理】

    1.示波器都包括幾個基本組成部分:

    示波管(陰極射線管)、垂直放大電路(Y放大)、水平放大電路(X放大)、掃描信號電路(鋸齒波發生器)、同步電路、電源等。

    2.李薩如圖形的原理:

    如果示波器的X和Y輸入時頻率相同或成簡單整數比的兩個正弦電壓,則熒光屏上將呈現特殊的光點軌跡,這種軌跡圖稱為李薩如圖形。

    如果作一個限制光點x、y方向變化范圍的假想方框,則圖形與此框相切時,橫邊上的切點數nx與豎邊上的切點數ny之比恰好等于Y與X輸入的兩正弦信號的頻率之比,即fy:fx=nx:ny。

    【實驗儀器】

    示波器×1,信號發生器×2,信號線×2。

    【實驗內容】

    1.基礎操作:

    了解示波器工作原理的基礎上閱讀所用機器的說明書,了解每個旋鈕的作用。其中最主要也是經常使用的旋鈕為橫向和縱向兩個。橫向旋鈕是控制掃描時間的旋鈕,調節時表現為熒光屏上顯示波形發生橫向的壓縮或展開;縱向旋鈕是調節垂直放大電路的旋鈕,調節時表現為熒光屏上顯示波形發生縱向的展開或壓縮,次旋鈕為兩個,分別控制示波器的兩個輸入信號。

    明確操作步驟及注意事項后,接通示波器電源開關。先找到掃描線并調至清晰。

    2.觀測李薩如圖形:

    向CH1、CH2分別輸入兩個信號源的正弦波,“掃描時間”的“粗調”旋鈕置于“X-Y”方式(即使兩路信號進行合成)。調出不同比值的李薩如圖形來,畫出草圖,并分析圖形的特點與兩個信號頻率之間的關系。繪出所觀察到的各種頻率比的李薩如圖形。

    設fx=1000Hz為約定真值,依次求出另一信號發生器的輸出頻率fy,并與該信號發生器讀數值f′y進行比較,一一求出它們的相對誤差。

    【實驗數據】

    【實驗結果】

    【誤差分析】

    1.兩臺信號發生器不協調。

    2.桌面振動造成的影響。

    3.示波器上顯示的熒光線較粗,取電壓值時的熒光線間寬度不準,使電壓值不準。

    4.取正弦周期時肉眼調節兩熒光線間寬度不準,導致周期不準。

    5.機器系統存在系統誤差。

    6.fy選取時上下跳動,可能取值不準。

    1 示波器工作原理

    示波器是利用電子示波管的特性,將人眼無法直接觀測的交變電信號轉換成圖像,顯示在熒光屏上以便測量的電子測量儀器。它是觀察數字電路實驗現象、分析實驗中的問題、測量實驗結果必不可少的重要儀器。示波器由示波管和電源系統、同步系統、X軸偏轉系統、Y軸偏轉系統、延遲掃描系統、標準信號源組成。

    1.1 示波管

    陰極射線管(CRT)簡稱示波管,是示波器的核心。它將電信號轉換為光信號。正如圖1所示,電子槍、偏轉系統和熒光屏三部分密封在一個真空玻璃殼內,構成了一個完整的示波管。

    1.熒光屏

    現在的示波管屏面通常是矩形平面,內表面沉積一層磷光材料構成熒光膜。在熒光膜上常又增加一層蒸發鋁膜。高速電子穿過鋁膜,撞擊熒光粉而發光形成亮點。鋁膜具有內反射作用,有利于提高亮點的輝度。鋁膜還有散熱等其他作用。

    當電子停止轟擊后,亮點不能立即消失而要保留一段時間。亮點輝度下降到原始值的10%所經過的時間叫做“余輝時間”。余輝時間短于10μs為極短余輝,10μs—1ms為短余輝,1ms—0.1s為中余輝,0.1s-1s為長余輝,大于1s為極長余輝。一般的示波器配備中余輝示波管,高頻示波器選用短余輝,低頻示波器選用長余輝。

    由于所用磷光材料不同,熒光屏上能發出不同顏色的光。一般示波器多采用發綠光的示波管,以保護人的眼睛。

    2.電子槍及聚焦

    電子槍由燈絲(F)、陰極(K)、柵極(G1)、前加速極(G2)(或稱第二柵極)、第一陽極(A1)和第二陽極(A2)組成。它的作用是發射電子并形成很細的高速電子束。燈絲通電加熱陰極,陰極受熱發射電子。柵極是一個頂部有小孔的金屬園筒,套在陰極外面。由于柵極電位比陰極低,對陰極發射的電子起控制作用,一般只有運動初速度大的少量電子,在陽極電壓的作用下能穿過柵極小孔,奔向熒光屏。初速度小的電子仍返回陰極。如果柵極電位過低,則全部電子返回陰極,即管子截止。調節電路中的W1電位器,可以改變柵極電位,控制射向熒光屏的電子流密度,從而達到調節亮點的輝度。第一陽極、第二陽極和前加速極都是與陰極在同一條軸線上的三個金屬圓筒。前加速極G2與A2相連,所加電位比A1高。G2的正電位對陰極電子奔向熒光屏起加速作用。

    電子束從陰極奔向熒光屏的過程中,經過兩次聚焦過程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一電子透鏡。第二次聚焦發生在G2、A1、A2區域,調節第二陽極A2的電位,能使電子束正好會聚于熒光屏上的一點,這是第二次聚焦。A1上的電壓叫做聚焦電壓,A1又被叫做聚焦極。有時調節A1電壓仍不能滿足良好聚焦,需微調第二陽極A2的電壓,A2又叫做輔助聚焦極。

    3.偏轉系統

    偏轉系統控制電子射線方向,使熒光屏上的光點隨外加信號的變化描繪出被測信號的波形。圖8.1中,Y1、Y2和Xl、X2兩對互相垂直的偏轉板組成偏轉系統。Y軸偏轉板在前,X軸偏轉板在后,因此Y軸靈敏度高(被測信號經處理后加到Y軸)。兩對偏轉板分別加上電壓,使兩對偏轉板間各自形成電場,分別控制電子束在垂直方向和水平方向偏轉。

    4.示波管的電源

    為使示波管正常工作,對電源供給有一定要求。規定第二陽極與偏轉板之間電位相近,偏轉板的平均電位為零或接近為零。陰極必須工作在負電位上。柵極G1相對陰極為負電位(—30V~—100V),而且可調,以實現輝度調節。第一陽極為正電位(約+100V~+600V),也應可調,用作聚焦調節。第二陽極與前加速極相連,對陰極為正高壓(約+1000V),相對于地電位的可調范圍為±50V。由于示波管各電極電流很小,可以用公共高壓經電阻分壓器供電。

    1.2 示波器的基本組成

    從上一小節可以看出,只要控制X軸偏轉板和Y軸偏轉板上的電壓,就能控制示波管顯示的圖形形狀。我們知道,一個電子信號是時間的函數f(t),它隨時間的變化而變化。因此,只要在示波管的X軸偏轉板上加一個與時間變量成正比的電壓,在y軸加上被測信號(經過比例放大或者縮小),示波管屏幕上就會顯示出被測信號隨時間變化的圖形。電信號中,在一段時間內與時間變量成正比的信號是鋸齒波。

    示波器的基本組成框圖如圖2所示。它由示波管、Y軸系統、X軸系統、Z軸系統和電源等五部分組成。

    被測信號①接到“Y"輸入端,經Y軸衰減器適當衰減后送至Y1放大器(前置放大),推挽輸出信號②和③。經延遲級延遲Г1時間,到Y2放大器。放大后產生足夠大的信號④和⑤,加到示波管的Y軸偏轉板上。為了在屏幕上顯示出完整的穩定波形,將Y軸的被測信號③引入X軸系統的觸發電路,在引入信號的正(或者負)極性的某一電平值產生觸發脈沖⑥,啟動鋸齒波掃描電路(時基發生器),產生掃描電壓⑦。由于從觸發到啟動掃描有一時間延遲Г2,為保證Y軸信號到達熒光屏之前X軸開始掃描,Y軸的延遲時間Г1應稍大于X軸的延遲時間Г2。掃描電壓⑦經X軸放大器放大,產生推挽輸出⑨和⑩,加到示波管的X軸偏轉板上。z軸系統用于放大掃描電壓正程,并且變成正向矩形波,送到示波管柵極。這使得在掃描正程顯示的波形有某一固定輝度,而在掃描回程進行抹跡。

    以上是示波器的基本工作原理。雙蹤顯示則是利用電子開關將Y軸輸入的兩個不同的被測信號分別

    顯示在熒光屏上。由于人眼的視覺暫留作用,當轉換頻率高到一定程度后,看到的是兩個穩定的、清晰的信號波形。

    示波器中往往有一個精確穩定的方波信號發生器,供校驗示波器用。

    2 示波器使用

    本節介紹示波器的使用方法。示波器種類、型號很多,功能也不同。數字電路實驗中使用較多的是20MHz或者40MHz的雙蹤示波器。這些示波器用法大同小異。本節不針對某一型號的示波器,只是從概念上介紹示波器在數字電路實驗中的常用功能。

    2.1 熒光屏

    熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。水平方向指示時間,垂直方向指示電壓。水平方向分為10格,垂直方向分為8格,每格又分為5份。垂直方向標有0%,10%,90%,100%等標志,水平方向標有10%,90%標志,供測直流電平、交流信號幅度、延遲時間等參數使用。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。

    2.2 示波管和電源系統

    1.電源(Power)

    示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。

    2.輝度(Intensity)

    旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。

    一般不應太亮,以保護熒光屏。

    3.聚焦(Focus)

    聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。

    4.標尺亮度(Illuminance)

    此旋鈕調節熒光屏后面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。

    2.3 垂直偏轉因數和水平偏轉因數

    1.垂直偏轉因數選擇(VOLTS/DIV)和微調

    在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。實際上因習慣用法和測量電壓讀數的方便,有時也把偏轉因數當靈敏度。

    蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。一般按1,2,5方式從 5mV/DIV到5V/DIV分為10檔。波段開關指示的值代表熒光屏上垂直方向一格的電壓值。例如波段開關置于1V/DIV檔時,如果屏幕上信號光點移動一格,則代表輸入信號電壓變化1V。

    每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處于“校準”位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。垂直偏轉因數微調后,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數縮小若干倍)。例如,如果波段開關指示的偏轉因數是1V/DIV,采用×5擴展狀態時,垂直偏轉因數是0.2V/DIV。

    在做數字電路實驗時,在屏幕上被測信號的垂直移動距離與+5V信號的垂直移動距離之比常被用于判斷被測信號的電壓值。

    2.時基選擇(TIME/DIV)和微調

    時基選擇和微調的使用方法與垂直偏轉因數選擇和微調類似。時基選擇也通過一個波段開關實現,按1、2、5方式把時基分為若干檔。波段開關的指示值代表光點在水平方向移動一個格的時間值。例如在1μS/DIV檔,光點在屏上移動一格代表時間值1μS。

    “微調”旋鈕用于時基校準和微調。沿順時針方向旋到底處于校準位置時,屏幕上顯示的時基值與波段開關所示的標稱值一致。逆時針旋轉旋鈕,則對時基微調。旋鈕拔出后處于掃描擴展狀態。通常為×10擴展,即水平靈敏度擴大10倍,時基縮小到1/10。例如在2μS/DIV檔,掃描擴展狀態下熒光屏上水平一格代表的時間值等于2μS×(1/10)=0.2μS

    示波器的標準信號源CAL,專門用于校準示波器的時基和垂直偏轉因數。例如COS5041型示波器標準信號源提供一個VP-P=2V,f=1kHz的方波信號。

    示波器前面板上的位移(Position)旋鈕調節信號波形在熒光屏上的位置。旋轉水平位移旋鈕(標有水平雙向箭頭)左右移動信號波形,旋轉垂直位移旋鈕(標有垂直雙向箭頭)上下移動信號波形。

    2.4 輸入通道和輸入耦合選擇

    1.輸入通道選擇

    輸入通道至少有三種選擇方式:通道1(CH1)、通道2(CH2)、雙通道(DUAL)。選擇通道1時,示波器僅顯示通道1的信號。選擇通道2時,示波器僅顯示通道2的信號。選擇雙通道時,示波器同時顯示通道1信號和通道2信號。測試信號時,首先要將示波器的地與被測電路的地連接在一起。根據輸入通道的選擇,將示波器探頭插到相應通道插座上,示波器探頭上的地與被測電路的地連接在一起,示波器探頭接觸被測點。示波器探頭上有一雙位開關。此開關撥到“×1”位置時,被測信號無衰減送到示波器,從熒光屏上讀出的電壓值是信號的實際電壓值。此開關撥到“×10"位置時,被測信號衰減為1/10,然后送往示波器,從熒光屏上讀出的電壓值乘以10才是信號的實際電壓值。

    2.輸入耦合方式

    輸入耦合方式有三種選擇:交流(AC)、地(GND)、直流(DC)。當選擇“地”時,掃描線顯示出“示波器地”在熒光屏上的位置。直流耦合用于測定信號直流絕對值和觀測極低頻信號。交流耦合用于觀測交流和含有直流成分的交流信號。在數字電路實驗中,一般選擇“直流”方式,以便觀測信號的絕對電壓值。

    2.5 觸發

    第一節指出,被測信號從Y軸輸入后,一部分送到示波管的Y軸偏轉板上,驅動光點在熒光屏上按比例沿垂直方向移動;另一部分分流到x軸偏轉系統產生觸發脈沖,觸發掃描發生器,產生重復的鋸齒波電壓加到示波管的X偏轉板上,使光點沿水平方向移動,兩者合一,光點在熒光屏上描繪出的圖形就是被測信號圖形。由此可知,正確的觸發方式直接影響到示波器的有效操作。為了在熒光屏上得到穩定的、清晰的信號波形,掌握基本的觸發功能及其操作方法是十分重要的。

    1.觸發源(Source)選擇

    要使屏幕上顯示穩定的波形,則需將被測信號本身或者與被測信號有一定時間關系的觸發信號加到觸發電路。觸發源選擇確定觸發信號由何處供給。通常有三種觸發源:內觸發(INT)、電源觸發內觸發使用被測信號作為觸發信號,是經常使用的一種觸發方式。由于觸發信號本身是被測信號的一部分,在屏幕上可以顯示出非常穩定的波形。雙蹤示波器中通道1或者通道2都可以選作觸發信號。

    電源觸發使用交流電源頻率信號作為觸發信號。這種方法在測量與交流電源頻率有關的信號時是有效的。特別在測量音頻電路、閘流管的低電平交流噪音時更為有效。

    外觸發使用外加信號作為觸發信號,外加信號從外觸發輸入端輸入。外觸發信號與被測信號間應具有周期性的關系。由于被測信號沒有用作觸發信號,所以何時開始掃描與被測信號無關。

    正確選擇觸發信號對波形顯示的穩定、清晰有很大關系。例如在數字電路的測量中,對一個簡單的周期信號而言,選擇內觸發可能好一些,而對于一個具有復雜周期的信號,且存在一個與它有周期關系的信號時,選用外觸發可能更好。

    2.觸發耦合(Coupling)方式選擇

    觸發信號到觸發電路的耦合方式有多種,目的是為了觸發信號的穩定、可靠。這里介紹常用的幾種。

    AC耦合又稱電容耦合。它只允許用觸發信號的交流分量觸發,觸發信號的直流分量被隔斷。通常在不考慮DC分量時使用這種耦合方式,以形成穩定觸發。但是如果觸發信號的頻率小于10Hz,會造成觸發困難。

    直流耦合(DC)不隔斷觸發信號的直流分量。當觸發信號的頻率較低或者觸發信號的占空比很大時,使用直流耦合較好。

    低頻抑制(LFR)觸發時觸發信號經過高通濾波器加到觸發電路,觸發信號的低頻成分被抑制;高頻抑制(HFR)觸發時,觸發信號通過低通濾波器加到觸發電路,觸發信號的高頻成分被抑制。此外還有用于電視維修的電視同步(TV)觸發。這些觸發耦合方式各有自己的適用范圍,需在使用中去體會。

    3.觸發電平(Level)和觸發極性(Slope)

    觸發電平調節又叫同步調節,它使得掃描與被測信號同步。電平調節旋鈕調節觸發信號的觸發電平。一旦觸發信號超過由旋鈕設定的觸發電平時,掃描即被觸發。順時針旋轉旋鈕,觸發電平上升;逆時針旋轉旋鈕,觸發電平下降。當電平旋鈕調到電平鎖定位置時,觸發電平自動保持在觸發信號的幅度之內,不需要電平調節就能產生一個穩定的觸發。當信號波形復雜,用電平旋鈕不能穩定觸發時,用釋抑(Hold Off)旋鈕調節波形的釋抑時間(掃描暫停時間),能使掃描與波形穩定同步。

    極性開關用來選擇觸發信號的極性。撥在“+”位置上時,在信號增加的方向上,當觸發信號超過觸發電平時就產生觸發。撥在“-”位置上時,在信號減少的方向上,當觸發信號超過觸發電平時就產生觸發。觸發極性和觸發電平共同決定觸發信號的觸發點。

    2.6 掃描方式(SweepMode)

    掃描有自動(Auto)、常態(Norm)和單次(Single)三種掃描方式。

    自動:當無觸發信號輸入,或者觸發信號頻率低于50Hz時,掃描為自激方式。

    常態:當無觸發信號輸入時,掃描處于準備狀態,沒有掃描線。觸發信號到來后,觸發掃描。

    單次:單次按鈕類似復位開關。單次掃描方式下,按單次按鈕時掃描電路復位,此時準備好(Ready)燈亮。觸發信號到來后產生一次掃描。單次掃描結束后,準備燈滅。單次掃描用于觀測非周期信號或者單次瞬變信號,往往需要對波形拍照。

    上面扼要介紹了示波器的基本功能及操作。示波器還有一些更復雜的功能,如延遲掃描、觸發延遲、X-Y工作方式等,這里就不介紹了。示波器入門操作是容易的,真正熟練則要在應用中掌握。值得指出的是,示波器雖然功能較多,但許多情況下用其他儀器、儀表更好。例如,在數字電路實驗中,判斷一個脈寬較窄的單脈沖是否發生時,用邏輯筆就簡單的多;測量單脈沖脈寬時,用邏輯分析儀更好一些。

    示波器實驗報告篇5

    示波器是測量信號波形的儀器,是應用最廣的測量儀器之一。它不僅廣泛應用于實驗室,而且成為現代工業不可缺少的輔助工具。利用示波器對電子產品的電路進行信號的檢測和分析,可以快速地發現并解決問題,因此正確分析示波器顯示波形的原理,以及熟悉使用示波器是非常有必要的,對學生以后學習和工作有很大的幫助。在大學物理實驗教學中,示波器原理與使用是一個必不可少的實驗。然而,該實驗儀器的原理復雜,大多數學生理解起來難度偏大,特別是面板旋鈕多使得學生熟悉起來很困難。通過該實驗對提高學生在信號波形測量方面的實踐能力、創新能力,以及理論聯系實際的能力提高有著極其重要的作用。在實驗教學過程總是會出現各種各樣的問題,因此我結合大學物理實驗示波器實驗中出現的問題,介紹一些經驗。

    1、示波器原理的闡述

    實驗教學首先講解的就是儀器原理,但是示波器的原理比較復雜,學生掌握起來比較困難。為解決這個難題,將示波器顯示波形的原理與單擺運動中沙漏形成波形的原理相類比,利用簡單易懂的知識對示波器的原理進行形象的講解,使其簡化,加深學生對示波器原理的理解和掌握。在大學生物理實驗教學中利用類比簡化思維幫助學生理解和學習新知識的方法效果明顯。

    示波管結構非常簡單,主要由電子槍、偏轉系統和熒光屏三個部分組成,偏轉系統由水平偏轉板(x軸方向)和豎直偏轉板(y軸方向)組成。在偏轉板上加電壓,則電子束的運動是發生偏轉,加不同的電壓,電子運動也不一樣,從而在熒光屏上所觀察到的圖形也有所不同。如果我們在豎直偏轉板上接入待觀察的正弦交流電壓,同時在水平偏轉板上接入鋸齒波電壓,則電子的運動將是水平方向的勻速直線運動與豎直方向的簡諧振動兩個相互垂直方向上運動的合成,屏上將顯示正弦波。

    把沙漏的單擺運動與示波器顯示波形的原理相結合進行類比,以幫助學生理解示波器的工作原理。實踐表明示波器顯示波形的原理雖然復雜,但是利用沙漏的單擺運動實驗對其進行類比簡化,可以很容易地讓學生理解掌握。示波器的工作原理可以如此掌握,在進行其他物理知識的學習和物理實驗的探討時,實驗老師也可以采用這種類比的方法,利用學生理解的知識點甚至是其他學科的知識去簡化復雜的物理內容。掌握了這種教學法,不僅可以使學生將新知識與已有的知識融會貫通,而且能使學生加深記憶和理解,為他們的學習提供極大的幫助。

    2、功能鍵的使用技巧及注意事項

    在教師準備實驗儀器階段,應注意示波器在使用一段時間或經較長時間存放或修理后,應重新進行校準,示波器精度校準分垂直校準和時基校準兩個方面。待示波器開機20分鐘后,內部穩定即可進行校準工作。掃描基線的校正,示波器應用在不同的場合,會受外磁場的影響引起掃描基線發生傾斜,此時需要對掃描基線進行校正。校正的方法:用螺絲刀調節“基線旋轉”,使掃描線和示波器的水平刻度線平行。

    在示波器功能鍵的講解上要做到示波器面板上各開關、按鍵、旋鈕都要詳細地講解相關功能特性,同時進行示范性的屏幕顯示演示,使得學生有更直觀形象的了解。要求做實驗前學生對照儀器面板說明書,體會一些常用開關、按鍵、旋鈕的作用,如輝度、聚焦、位移、X―Y等,讓學生有一個自己獨立操作儀器的過程。

    非常有必要在黑板上板示示波器使用注意事項及技巧:

    (1)測試前,在不明確被測信號幅度大小,可先將示波器的VOLTS/DIV選擇開關置于最大擋,避免電壓過高而造成示波器損壞,同時避免該檔位過小往往出現信號顯示遠遠大于屏幕,以至于學生誤認為沒有信號輸入。一般選擇合適檔位使得信號顯示高度約占熒光屏高度的二分之一到三分之二之間,這樣減小在信號測量時出現的誤差。

    (2)在用示波器測量頻率較低信號時,其波形不容易同步,表現為波形不穩定。一般情況規定學生輸入較高頻率信號,同時仔細調節示波器上的觸發電平控制(LEVEL)旋鈕,使被測信號穩定和同步。“觸發電平”鍵是示波器面板上眾多旋鈕中非常重要的旋鈕,其作用在眾多物理實驗教材中只是介紹而已,通過觸發掃描使待測信號與掃描信號同步以達到圖形的穩定,圖形不穩定的情況在學生實驗中出現得最多。

    (3)TIME/DIV(掃描速率選擇)旋鈕。此旋鈕的作用是改變加在水平偏轉板上鋸齒波掃描信號的頻率。在不明確被測信號頻率大小,可將TIME/DIV選擇掃描時間置于最小擋,避免低頻率信號一直閃動。合適的檔位是信號波形顯示2到3個周期,這樣在時間測量時可以減少誤差。

    (4)“觸發方式”、“觸發源”和“觸發電平”的選擇。這三者選擇的不正確,往往出現波形不穩定的情況,屏幕上的波形發生向左或向右的連續移動。要使波形能夠穩定下來,跟示波器使用的“觸發方式”、“觸發源”及“觸發電平”選擇有關,合理運用觸發方式、觸發源來觀察信號,要求學生在實驗中掌握。

    (5)在利薩如圖實驗部分,為了避免視覺上的混亂,要求學生在關閉通道1的前提下再調整好通道2的信號顯示。

    (6)示波器工作時,周圍不要放置大功率的變壓器,否則,對示波器會有很大影響和噪聲干擾。

    3、示波器常見故障的分析

    示波器用于實驗教學使用頻繁,且使用時間較長,很容易出故障。掌握示波器的常見故障的分析檢修方法,有利于縮短維修周期,避免因為儀器故障耽誤教學。在遇到各種問題時,學生一般無法解決,往往需要教師引導性地解決。這就要求教師要具備解決這些問題的能力。當然這些需要在教學中不斷地總結經驗,多途徑地提高解決問題的能力,進而能夠更好地指導學生排除故障。

    在教學過程中,學生在出現問題時,經常性地亂按功能鍵,到了后面他自己都不知道按了什么鍵,有時的確是儀器出現問題。教師應該把出現的各種原因都考慮進去,先考慮儀器正常是儀器參數設置的問題,再考慮儀器元件出現問題。例如示波器屏幕上沒有任何信號或者信號在示波器上顯示閃動的比較厲害。首先,看信號輸入端的問題即信號發生器示波器的相關設置是否正常,例如波形按鈕是否有選擇、頻率的設置是否正確,等等,然后檢查與示波器的接線,以及探頭接觸是否良好、探頭線斷線等問題,再檢查示波器相關按鍵的設置是否和信號發生器輸出信號一直,可能是學生按了所用通道的接地旋鈕,這樣信號就會對地短路,沒有任何信號輸入到示波器測量端,以及示波器電源開關有沒有打開,可以調節亮度旋鈕看是否亮度設置太低。其次,調節上下位移旋鈕和左右位移旋鈕看波形是否偏離屏幕顯示區。所以首先要求老師要一定程度的對儀器硬件有所了解,那些元件出現問題可能會出現什么樣的現象,對儀器的操作那就要求非常熟悉,總之做到軟件硬件都過關。

    4、結語

    以上是我在示波器實驗教學實踐中總結的一些經驗。在有限學習時間內,學習、掌握基本的儀器操作方法,讓學生做到實驗目標明確,理論與實踐相結合,在掌握好基本技能的基礎上進行開放式自主訓練。教師應引導學生解決實驗中遇到的一些問題,提高學生的創新能力,使學生體會到大學物理實驗這門課的作用與重要性,從而逐漸地讓學生有意識地去提高自己的動手能力。

    示波器實驗報告篇6

    示波器,是顯示被測量的瞬時值軌跡變化情況的儀器。那么,怎樣正確使用示波器?

    示波器初次使用前或久藏復用時,有必要進行一次能否工作的簡單檢查和進行掃描電路穩定度、垂直放大電路直流平衡的調整。示波器在進行電壓和時間的定量測試時,還必須進行垂直放大電路增益和水平掃描速度的校準。

    選擇Y軸耦合方式:根據被測信號頻率的高低,將Y軸輸入耦合方式選擇“AC-地-DC”開關置于AC或DC

    選擇Y軸靈敏度:根據被測信號的大約峰-峰值(如果采用衰減探頭,應除以衰減倍數;在耦合方式取DC檔時,還要考慮疊加的直流電壓值),將Y軸靈敏度選擇V/div開關(或Y軸衰減開關)置于適當檔級。實際使用中如不需讀測電壓值,則可適當調節Y軸靈敏度微調(或Y軸增益)旋鈕,使屏幕上顯現所需要高度的波形。

    選擇觸發(或同步)信號來源與極性:通常將觸發(或同步)信號極性開關置于“+”或“-”檔。

    選擇掃描速度:根據被測信號周期(或頻率)的大約值,將X軸掃描速度t/div(或掃描范圍)開關置于適當檔級。實際使用中如不需讀測時間值,則可適當調節掃速t/div微調(或掃描微調)旋鈕,使屏幕上顯示測試所需周期數的波形。如果需要觀察的是信號的邊沿部分,則掃速t/div開關應置于最快掃速檔。

    輸入被測信號: 被測信號由探頭衰減后(或由同軸電纜不衰減直接輸入,但此時的輸入阻抗降低、輸入電容增大),通過Y軸輸入端輸入示波器。

    示波器為了使波形的讀數更加精確、清晰,在原始校正波形時,一定要把波形調得最準、最清晰、線條調至最精細,只有這樣,讀數才會最為準確,誤差才會減至最少,這對故障分析往往有舉足輕重的作用。最后還有一點需要注意的是:校正波形調整完畢后,所有補償按鈕都不能調動或更改(即SWP VAP和電壓補償),否則將要再次對示波器重新校正一次。

    儀器操作人員的安全和儀器安全,儀器在安全范圍內正常工作,保證測量波形準確、數據可靠,應注意: 1.通用示波器通過調節亮度和聚焦旋鈕使光點直徑最小以使波形清晰,減小測試誤差;不要使光點停留在一點不動,否則電子束轟擊一點宜在熒光屏上形成暗斑,損壞熒光屏。

    2.測量系統- 例如示波器、信號源;打印機、計算機等設備等。被測電子設備- 例如儀器、電子部件、電路板、被測設備供電電源等設備接地線必須與公共地(大地)相連。

    3. TDS200/TDS1000/TDS2000 系列數字示波器配合探頭使用時,只能測量(被測信號- 信號地就是大地,信號端輸出幅度小于300V CAT II)信號的波形。絕對不能測量市電AC220V 或與市電AC220V 不能隔離的電子設備的浮地信號。(浮地是不能接大地的,否則造成儀器損壞,如測試電磁爐。)

    4.通用示波器的外殼,信號輸入端BNC 插座金屬外圈,探頭接地線,AC220V 電源插座接地線端都是相通的。如儀器使用時不接大地線,直接用探頭對浮地信號測量,則儀器相對大地會產生電位差;電壓值等于探頭接地線接觸被測設備點與大地之間的電位差。這將對儀器操作人員、示波器、被測電子設備帶來嚴重安全危險。

    5. 用戶如須要測量開關電源(開關電源初級,控制電路) 、UPS(不間斷電源)、電子整流器、節能燈、變頻器等類型產品或其它與市電AC220V 不能隔離的電子設備進行浮地信號測試時,必使用DP100高壓隔離差分探頭。 示波器使用中的其他注意事項

    (1)熱電子儀器一般要避免頻繁開機、關機,示波器也是這樣。

    (2)如果發現波形受外界干擾,可將示波器外殼接地.

    (3)“Y輸入”的電壓不可太高,以免損壞儀器,在最大衰減時也不能超過400 V.“Y輸入”導線懸空時,受外界電磁干擾出現干擾波形,應避免出現這種現象。

    (4)關機前先將輝度調節旋鈕沿逆時針方向轉到底,使亮度減到最小,然后再斷開電源開關.(5)在觀察熒屏上的亮斑并進行調節時,亮斑的亮度要適中,不能過亮。

    示波器分為萬用示波表,數字示波器,模擬示波器,虛擬示波器,任意波形示波器, 信號發生器,函數發生器。

    示波器實驗報告篇7

    【實驗題目】

    示波器的原理和使用

    【實驗目的】

    1、了解示波器的基本機構和工作原理,掌握使用示波器和信號發生器的基本方法。

    2、學會使用示波器觀測電信號波形和電壓副值以及頻率。

    3、學會使用示波器觀察李薩如圖并測頻率。

    【實驗原理】

    1、示波器都包括幾個基本組成部分:

    示波管(陰極射線管)、垂直放大電路(Y放大)、水平放大電路(X放大)、掃描信號電路(鋸齒波發生器)、同步電路、電源等。

    2、李薩如圖形的原理:

    如果示波器的X和Y輸入時頻率相同或成簡單整數比的兩個正弦電壓,則熒光屏上將呈現特殊的光點軌跡,這種軌跡圖稱為李薩如圖形。

    如果作一個限制光點x、y方向變化范圍的假想方框,則圖形與此框相切時,橫邊上的切點數nx與豎邊上的切點數ny之比恰好等于Y與X輸入的兩正弦信號的頻率之比,即fy:fx=nx:ny。

    【實驗儀器】

    示波器×1,信號發生器×2,信號線×2。

    【實驗內容】

    1、基礎操作:

    了解示波器工作原理的基礎上閱讀所用機器的說明書,了解每個旋鈕的作用。其中最主要也是經常使用的旋鈕為橫向和縱向兩個。橫向旋鈕是控制掃描時間的旋鈕,調節時表現為熒光屏上顯示波形發生橫向的壓縮或展開;縱向旋鈕是調節垂直放大電路的旋鈕,調節時表現為熒光屏上顯示波形發生縱向的展開或壓縮,次旋鈕為兩個,分別控制示波器的兩個輸入信號。

    明確操作步驟及注意事項后,接通示波器電源開關。先找到掃描線并調至清晰。

    2、觀測李薩如圖形:

    向CH1、CH2分別輸入兩個信號源的正弦波,“掃描時間”的“粗調”旋鈕置于“X—Y”方式(即使兩路信號進行合成)。調出不同比值的李薩如圖形來,畫出草圖,并分析圖形的特點與兩個信號頻率之間的關系。繪出所觀察到的各種頻率比的李薩如圖形。

    設fx=1000Hz為約定真值,依次求出另一信號發生器的輸出頻率fy,并與該信號發生器讀數值f′y進行比較,一一求出它們的相對誤差。

    【實驗數據】

    【實驗結果】

    【誤差分析】

    1、兩臺信號發生器不協調。

    2、桌面振動造成的影響。

    3、示波器上顯示的熒光線較粗,取電壓值時的熒光線間寬度不準,使電壓值不準。

    4、取正弦周期時肉眼調節兩熒光線間寬度不準,導致周期不準。

    5、機器系統存在系統誤差。

    6、fy選取時上下跳動,可能取值不準。

    本文來源:http://www.lsjse.com/gongzuobaogao/261083.html

    猜你感興趣

    久久成人国产精品| 国产精品9999久久久久| 色综合久久精品中文字幕首页| 无码精品一区二区三区在线 | 国产精品久久久久国产A级| 精品国产婷婷久久久| 久久久久这里只有精品| 国产香蕉国产精品偷在线观看| 久久国产成人精品国产成人亚洲| 2022国内精品免费福利视频| 国产韩国精品一区二区三区| 精品久久人人妻人人做精品| 国产呦小j女精品视频| 香蕉在线精品视频在线观看6| 日韩精品无码人成视频手机| 久久九九亚洲精品| 一级香蕉精品视频在线播放| 91大神在线精品视频一区| 精品国产一区二区三区麻豆| 91精品免费在线观看| 成人精品一区二区激情| 国产大片91精品免费看3| 国产精品国产三级国产| 亚洲一区精品无码| 麻豆国产在线精品国偷产拍| 久99久热只有精品国产女同| 亚洲国产精品无码久久九九大片| 影院成人区精品一区二区婷婷丽春院影视| 国产成人综合久久精品| 亚洲精品乱码久久久久久蜜桃| 中文字幕在线精品| 久久国产精品久久久久久 | 国产精品视频一区麻豆 | 久久国内精品自在自线软件| 久久精品a亚洲国产v高清不卡| 992tv精品视频tv在线观看| 国产精品免费视频网站| 国产精品女人在线观看| 精品一区二区三区影院在线午夜| 一本色道久久综合亚洲精品高清| 日韩精品一区二区三区大桥未久|